Using retinex for point selection in 3D shape registration
نویسندگان
چکیده
Inspired by retinex theory, we propose a novel method for selecting key points from a depth map of a 3D freeform shape; we also use these key points as a basis for shape registration. To find key points, first, depths are transformed using the Hotelling method and normalized to reduce their dependence on a particular viewpoint. Adaptive smoothing is then applied using weights which decrease with spatial gradient and local inhomogeneity; this preserves local features such as edges and corners while ensuring smoothed depths are not reduced. Key points are those with locally maximal depths, faithfully capturing shape. We show how such key points can be used in an efficient registration process, using two state-ofthe-art iterative closest point variants. A comparative study with leading alternatives, using real range images, shows that our approach provides informative, expressive, and repeatable points leading to the most accurate registration results. & 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Region-based saliency estimation for 3D shape analysis and understanding
The detection of salient regions is an important pre-processing step for many 3D shape analysis and understanding tasks. This paper proposes a novel method for saliency detection in 3D free form shapes. Firstly, we smooth the surface normals by a bilateral filter. Such a method is capable of smoothing the surfaces and retaining the local details. Secondly, a novel method is proposed for the est...
متن کاملA Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information
Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...
متن کاملA novel Local feature descriptor using the Mercator projection for 3D object recognition
Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...
متن کاملAudio-Tactile Annotation and Registration of 3D Point Clouds for Robotic Manipulation
The recent advent of low-cost 3D sensing technologies has greatly increased the use of 3D point cloud-based representations in robotics. Such representations have a variety of applications, including object recognition, pose estimation and grasp point selection. A major limitation of 3D point clouds, however, is that they fail to capture an object’s functional features – for example, a 3D model...
متن کاملNon-rigid 3D Shape Registration using an Adaptive Template
We present a new fully-automatic non-rigid 3D shape registration (morphing) framework comprising (1) a new 3D landmarking and pose normalisation method; (2) an adaptive shape template method to accelerate the convergence of registration algorithms and achieve a better final shape correspondence and (3) a new iterative registration method that combines Iterative Closest Points with Coherent Poin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 47 شماره
صفحات -
تاریخ انتشار 2014